
Comparing Current Approaches to Automatic
Differentiation in Programming Languages

Quan LONG
August, 2022

Abstract
The extended work of final research internship of MPRI M2 program, under supervising of Dr.Damiano
MAZZA, directeur de recherche, CNRS (INS2I) in Laboratoire d’Informatique de Paris Nord of
Université Sorbonne Paris Nord.
Differentiation is an essential computation in Machine learning and Deep learning, as the Dataset and
parameter size are exploding in actual projects, they could easily get to trillions as we speak, with the
structures getting more and more complicated, doing Automatic Differentiation (AD for short) linearly
and without exploding in the calculation of sub-expressions (hence no duplication for the ones already
calculated) is currently an active topic. Mathematicians, logicians, developers, etc are modeling this
problem from different perspectives and giving different approaches.
Greatly distinct from each other they might seem to be, some of them are actually quite similar despite of
the methodology context, while some of them are uniquely designed and being quite different from others.
In this internship, we compare current approaches of AD methods in programming language based on
Damiano’s paper [BMP20] and its reformulation we developed during the comparison.

Contents
1 Overture : Introduction 1

1.1 Basic notions of differentiation . 2
1.1.1 Derivative . 2
1.1.2 Rules for Differentiation . 2

1.2 Category theory Preliminaries . 3

2 Prelude : Automatic Differentiation 3
2.1 Forward-mode : Dual Number method . 3
2.2 Reverse-mode : Backpropagation algorithm . 4
2.3 Symbolic Backpropagation . 5

3 Allegro : Existing Approaches 5
3.1 Simply Typed Lambda-Calculus with Linear Negation . 5
3.2 Categorical approach . 6
3.3 Approaches more close to implementation . 7

4 Intermezzo : Graphical language setup 7
4.1 Setup in String diagrams . 7
4.2 Setup in Proof nets . 8
4.3 Graphical standard AD . 8

5 Adagio : Comparing BMP20 with CHAD 9
5.1 Construction of BMP20 Reverse-mode transformation ←−Dd(t) 9
5.2 Construction of CHAD Reverse-mode transformation ←−DΓ(t) 10
5.3 Comparing Graphical representations of BMP20 and CHAD 12

5.3.1 op(t1, ..., tk) . 12

a

5.3.2 let x = t in s . 13
5.3.3 λx.t . 14
5.3.4 t s . 14

5.4 Comparison with an example . 15

6 Adagio : Comparing reformulated BMP20 with Kra+22 16
6.1 Monadic approach with Kra+22 . 17
6.2 Reformulation of linear factoring for BMP20 . 18

6.2.1 New backpropagator . 18
6.2.2 Typing . 18
6.2.3 Typing rules . 18
6.2.4 Evaluation rules . 19
6.2.5 Verifying new transformation by graphical language 19

7 Presto : Conclusion 20

A Conventions i
A.1 Higher-order . i

A.1.1 Higher-order quantification (polymorphism) . i
A.1.2 Higher-order types . ii
A.1.3 Higher-order derivatives . ii

B Intuition for the proof of the fact mentioned in BMP20 ii

C The Typing rules of original BMP20 approach ii

D The Monadic translation and Reverse-mode wrapper of Kra+22 iii

b

1 Overture : Introduction
There’s a fable back in the epoch of the Three Kingdoms: One day, King of Wu offered King of Wei, Cao

Cao, an elephant, such a giant creature, Cao Cao thinks, and he wants to know exactly how much weight it
has. But they didn’t have steelyard big enough for an elephant, a chancellor offers an idea to cut it in pieces
and weight them, which got denied: obviously a whole elephant is still required after weighting. The child
Prince Cao Chong comes up with an idea, to put the elephant on a boat, then we only need to weight the
things that makes the same waterline as the elephant does.

That gives us an insight of the basic idea of AD, especially backward AD – we don’t want to duplicate and
cut the elephant into pieces as it will be too difficult to make the elephant whole again, instead, we use dual
number method to calculate and store some information of it, thus we’ll be able to get back with much less
efforts (linear).

In Deep learning, how to efficiently training a neural network involves efficiently computing gradients (more
generally, Jacobians), by the time of this report, AD techniques are routinely used in the industry through
deep learning frameworks such as TensorFlow [Aba+16], PyTorch [Pas+17] and most recently, JAX.1

We won’t talk too much about deep learning, but its optimization regarding the efficiency in terms of
the gradient descent algorithm and Monte-Carlo integration algorithms rely crucially on the calculation of
derivatives, and is where we are interested when it comes to AD, whose key idea is to compute the gradient
of a computational graph by accumulating in a suitable way the partial derivatives of the basic functions
composing the graph. The details and examples of numerical and symbolical (computational graph) of AD
will be presented later in Prelude : Automatic Differentiation.

Among the different approaches of modeling AD, in a purely functional point of view, two problems are
mostly concerned by us: does this method give a linear solution? This is the basic requirement the a reverse-
mode, and furthermore, also the core point of this internship, does this method have sub-expressions sharing
so that we don’t need to deal with duplicated nodes. Some problems which are not the main concern such
as how does the approach handle higher-order, for definition of higher-order see Higher-order, as it’s normally
natural for functional methods to go from first-order to higher-order.

Why it’s very necessary to find a way to understand their mechanisms and compare them?
And per [VS21], correctness proofs of reverse AD have taken a define-by-run approach or have relied on

non-standard operational semantics, using forms of symbolic execution [BMP20] [AP20] [MO20] . Most work
that treats reverse AD as a source-code transformation does so by making use of complex transformations
which introduce mutable state and/or non-local control flow. As a result, we are not sure whether and why
such techniques are correct.

To understand the differences and mechanisms of different methods, we first developed a formal graphical
language, could be either string diagram or proof net, in Intermezzo : Graphical language setup, it is very handy
in comparing [BMP20] with [VS21], as they come from lambda calculus, linear substitution and category theory
contexts, and could be further applied to [BAJM08] etc.

But for some approaches more close to implementation, such as [Kra+22], using only graphical language
will not be a good only option, as it would get very complicated once some complex functions of real world
functional languages (Haskell in this case) gets involved. However, in this case we can easily analysis and
evaluate its mechanisms from the functions structures and outcomes.

During the comparisons, not only did we succeed in understanding the mechanisms, eventually we developed
a reformulation of [BMP20] to solve the problem of sharing in sub-expressions.

The main contribution of this work consists of two parts:
• Comparing Simply Typed Lambda-Calculus with Linear Negation method [BMP20], which is the baseline

of comparison, to categorical method, more specifically Combinatory Homomorphic AD (CHAD)[VS21],
using a formal graphical language setup, to find out how CHAD solved the problem of sharing in sub-
expressions.

• Comparing [BMP20] to [Kra+22], with a reformulation of linear factoring for [BMP20] constructed during
the comparison.

1https://jax.readthedocs.io/en/latest/notebooks/quickstart.html

1

https://jax.readthedocs.io/en/latest/notebooks/quickstart.html

1.1 Basic notions of differentiation
1.1.1 Derivative

Definition 1.1. Derivative f ′ x of a function f :: R→ R at a point x in the domain of f is a number defined
as:

f ′ x = lim
ϵ→∞

f(x + ϵ)− f x

ϵ

Beyond functions of type R→ R ?
• complex numbers C→ C : works, division is defined.
• R→ Rn : works, dividing a vector in Rn by a scalar.
• Rm → Rn troublesome, dividing a vector ϵ :: Rm is not defined. Partial derivatives with respect to

m scalar components of domain Rm on codomain Rn, hence a Jacobian matrix Jij = ∂fi/∂xj for i ∈
{1, ..., n}, j ∈ {1, ..., m}.

Scalar chain rule is omitted, vector chain rule: "multiplying" two matrices A and B (Jacobians):

(A ·B)ij =
m∑

k=1
Aik ·Bkj

1.1.2 Rules for Differentiation
[Ell18]

D :: (a→ b)→ (a→ (a ⊸ b))
It follows that differentiating twice is:

D2 = D ◦ D :: (a→ b)→ (a→ (a ⊸ a ⊸ b))

Theorem 1.2 (compose/"chain" rule).
D (g ◦ f) a = D g (f a) ◦ D f a

For f :: a→ b and g :: b→ c, then D f a :: a ⊸ b, and D g (f a) :: b ⊸ c, so both side has type of a ⊸ c

Strictly speaking, it’s not a compositional recipe for differentiating sequential compositions, i.e., D (g ◦ f)
doesn’t only need D g and D f , it also needs f . To restore compositionality, using:

D+ :: (a→ b)→ (a→ b× (a ⊸ b))
D+ f a = (f a,D f a)

Corollary 1.3. D+ is efficiently compositional with respect to ◦.
D+ (g ◦ f) a = let {(b, f ′) = D+ f a; (c, g′) = D+ g b} in (c, g′ ◦ f ′)

Parallel Composition:

Theorem 1.4 (cross rule).
D (f × g) (a, b) = D f a×D g b

Definition 1.5 (linear). A function f is said to be linear when it distributes over (preserves the structure
of) vector addition and scalar multiplication:

f (a + a′) = f a + f a′

f (s · a) = s · f a

Theorem 1.6 (linear rule). For all linear functions f , D f a = f .

And therefore we have:

Corollary 1.7. For all linear functions f , D+ f = λa→ (f a, f).

2

Figure 1: A computational graph with inputs x1, x2 and output y, and its corresponding term. Nodes are
drawn as circles, hyperedges as triangles. The output y does not appear in the term: it corresponds to its root.

1.2 Category theory Preliminaries
We assume the readers are familiar with categories, functors, natural transformations, and their theory of

(co)limits and adjunctions.

Definition 1.8. (Commutative Monoids) A monoid |X|, 0X , +X consists of a set |X| with an element 0X ∈
|X| and a function (+X) : |X| × |X| → |X| such that 0X +X x = x = x +X 0X for any x ∈ |X| and
x+X(x′+Xx′′) = (x+Xx′)+Xx′′ for any x, x′, x′′ ∈ |X|. A monoid is called commutative if x+Xx′ = x′+Xx
for all x, x′ ∈ |X|. Given monoids X and Y , a function f : |X| → |Y | is called a homomorphism of monoids
if f(0X) = 0Y and f(x +X x′) = f(x) +Y f(x′). [VS21] write CMon for the category of commutative
monoids and their homomorphisms.

Grothendieck Constructions is within the preliminaries because CHAD method is based on it. But
I will not waste a lot of space to describe it here since it’s not an internship on category theory and it
has very little connection to the main content. Anyone interested could check the definition here: https:
//ncatlab.org/nlab/show/Grothendieck+construction.

2 Prelude : Automatic Differentiation
Follow the basic notions of derivative in the introduction, now we can show that, given a program x : rn ⊢

t : rm that takes an n-dimensional array of real numbers as input and produces an m-dimensional array of
reals as output, in another word, program t computes some mathematical function JtK : Rn → Rm and we want
to transform it to:

• −→D(t) that computes the derivative DJtK : Rn → Rn ⊸ Rm, as the forward AD;
• ←−D(t) that computes the transposed derivative DJtKt : Rn → Rm ⊸ Rn, as the reverse AD.
Here, we write Rn for the space of (co)tangent vectors to Rn ; we regard Rn as a commutative monoid under

elementwise addition. We write ⊸ for a linear function type to emphasize that derivatives are linear in the
sense of being monoid homomorphisms.[VS21]

Remark. Majority of the following content in this section are directly from [BMP20], part 2, A CRASH
COURSE IN AUTOMATIC DIFFERENTIATION, to help the reader understand AD from scratch
with example that we’ll be using for the comparison. It is where I started to understand AD in the beginning
of the internship with the help of Damiano as well.

2.1 Forward-mode : Dual Number method
Numerically, also in the implementations, we use the famous Dual number method to do forward AD. It

is accomplished by augmenting the algebra of real numbers and obtaining a new arithmetic. An additional
component is added to every number to represent the derivative of a function at the number, and all arithmetic
operators are extended for the augmented algebra. The augmented algebra is the algebra of dual numbers.

Suppose that we are given a computational graph (in the sense of a hypergraph) G with input nodes x1, ..., xn

and one output node y, an example is as in Figure 1, and suppose that we want to compute its j-th partial
derivative in r = (r1, ..., rn) ∈ Rn. It maintains a memory consisting of a set of assignments of the form

3

https://ncatlab.org/nlab/show/Grothendieck+construction
https://ncatlab.org/nlab/show/Grothendieck+construction

x := (s, t), where x is a node of G and s, t ∈ R (known as primal and tangent), and proceeds as follows:
• we initialize the memory with xi := (ri, 0) for all 0 ≤ i ≤ n, i ̸= j, and xj := (rj , 1).
• At each step,we look for a node z1, ..., zk → w such that zi = (si, ti) is in memory for all 1 ≤ i ≤ k (there

is at least one by acyclicity) and w is unknown, and we add to memory as a pair:
w := (f(s) , Σk

1∂if(s) · ti)
where s := s1, ..., sm.

This procedure terminates in a number of steps equal to |G| and one may show, using the chain rule
for derivatives (which we will recall in a moment), that at the end the memory will contain the assignment
y := (JGK(r), ∂jJGK(r)).

Example. For example, if G is the computational graph of Fig. 1 and we start with x1 := (5, 1), x2 := (2, 0),
we obtain z1 := (x1 − x2, 1 · 1 − 1 · 0) = (3, 1), then z2 := (z1 · z1, z1 · 1 + z1 · 1) = (9, 6) and finally
y := (sin(z2), cos(z2) · 6) = (0.412,−5.467), which is what we expect since ∂1JGK(x1, x2) = cos((x1− x2)2) ·
2(x1 − x2).

Remark (remark on complexity and efficiency). Since the arity k of function symbols is bounded, the cost
of computing one partial derivative is O(|G|). Computing the gradient requires computing all n partial
derivatives, giving a total cost of O(n|G|), which is not very efficient since n may be huge (typically, it is
the number of weights of a deep neural network, which may well be in the millions).

2.2 Reverse-mode : Backpropagation algorithm
Then we move to the reverse-mode, a more efficient way of computing gradients in the many inputs/one

output case.
As usual, we are given a computational graph (seen as a hypergraph) G with input nodes x1, ..., xn and

output node y,as well as r = r1, ..., rn ∈ R ,which is the point where we wish to compute the gradient. The
backprop algorithm maintains a memory consisting of assignments of the form x := (r, α),where x is a node of
G and r, α ∈ R (the primal and the cotangent2), plus a boolean flag with values "marked/unmarked" for each
hyperedge of G, and proceeds thus:

• initialization: the memory is initialized with xi := (ri, 0) for all 1 ≤ i ≤ n, and the forward phase starts;
• forward phase: at each step, a new assignment z := (s, 0) is produced, with s being computed exactly

as during forward evaluation, ignoring the second component of pairs in memory (i.e., s is the value of
node z); once every node of G has a corresponding assignment in memory, the assignment y := (t, 0)
is updated to y := (t, 1), every hyperedge is flagged as unmarked and the backward phase begins (we
actually know that t = JGK(r), but this is unimportant);

• backward phase:at each step,we look for an unmarked hyperedge z1, ..., zk → w such that all hyperedges
having w among their sources are marked. If no such hyperedge exists, we terminate. Otherwise, assuming
that the memory contains w := (u, α) and zi := (si, βi) for all 1 ≤ i ≤ k , we update the memory with
the assignments zi := (si, βi + ∂if(s) · α) (where s := s1, ..., sk) for all 1 ≤ i ≤ k and flag the hyperedge
as marked.

One may prove that, when the backprop algorithm terminates, the memory contains assignments of the
form xi := (ri, ∂iJGK(r)) for all 1 ≤ i ≤ n, i.e., the value of each partial derivative of JGK in r is computed at
the corresponding input node, and thus the gradient may be obtained by just collecting such values.

Example. Let |G| be the computational graph of Fig. 1 and let r1 = 5, r2 = 2. The forward phase
terminates with x1 := (5, 0), x2 := (2, 0), z1 := (3, 0), z2 := (9, 0), y := (0.412, 1). From here, the backward
phase updates z2 := (9, cos(z2) · 1) = (9,−0.911), then z1 := (3, z1 · −0.911 + z1 · −0.911) = (3,−5.467)and
finally x1 := (5, 1 · −5.467) = (5,−5.467) and x2 := (2,−1 · −5.467) = (2, 5.467), as expected since
∂2JGK = −∂1JGK.

Remark (remark on complexity and efficiency). Compared to forward mode AD, the backprop algorithm may
seem a bit contrived (it is certainly harder to understand why it works) but the gain in terms of complexity
is considerable: the forward phase is just a forward evaluation; and, by construction, the backward phase
scans each hyperedge exactly once performing each time a constant number of operations. So both phases
are linear in |G|, giving a total cost of O(|G|), like forward mode. Except that, unlike forward mode, a
single evaluation now already gives us the whole gradient, independently of the number of inputs!

2The original paper uses "adjoint" but "cotangent" is the more popular way in the day of this report.

4

Figure 2: The computational graph of the bpx1,x2,a(G) where G is in Fig. 1, and its corresponding term

2.3 Symbolic Backpropagation
The symbolic methodology we saw for forward mode AD may be applied to the reverse mode too: given a

computational graph G with n inputs and one output, one may produce a computational graph bp(G) with
n + 1 inputs and 1 + n outputs such that,for all r = r1, ..., rn ∈ R,the forward evaluation of bp(G)(r, 1) has
output (JGK(r),∇JGK(r)). Moreover, |bp(G)| = O(|G|)

Let us look at an example, shown in Fig. 2. First of all, observe that bpx1,x2,a(G) contains a copy of G,
marked in blue. This corresponds to the forward phase. The nodes marked in red correspond to the backward
phase. Then we can check that the forward evaluation of bpx1,x2,a(G) with x1 := 5, x2 := 2and a := 1 matches
exactly the steps of the backprop algorithm as exemplified in Reverse-mode : Backpropagation algorithm, with
node b (resp. c, x′1, x′2) corresponding to the second component of the value of node z2 (resp. z1, x′1, x′2). (The
nodes v, c′ and c′′ are just intermediate steps in the computation of b and c which are implicit in the numerical
description of the algorithm and are hidden in syntactic sugar).

Different formal definitions of the reverse transformations will be shown and compared in following sec-
tions, and an extended version of [BMP20] solving the sharing problem in sub-expressions will be given in
Reformulation of linear factoring for BMP20.

3 Allegro : Existing Approaches
There’s another fable back in days, another elephant, was put in a room of completely darkness. Several

people are asked to describe it, one touches the nose and says the elephant’s like a giant snake, one touches
the leg and says the elephant’s like a tree.

From many different approaches we can achieve a linearized AD, but however it can be very difficult for
others to understand why and how they work, how much different between them and how can they transfer to
each other.

The earliest work performing AD in a functional setting is Reverse-mode AD in a functional frame-
work: Lambda the ultimate backpropagator [BAJM08] in 2008, they want to define a programming
language with the ability to perform AD on its own programs, by using a combinator ←−J computing the
Jacobian of its argument, and whose execution implements reverse mode AD.

Why are we focusing on functional ?
ML, DL projects usually run on parallel devices, which purely functional is more adaptable.

3.1 Simply Typed Lambda-Calculus with Linear Negation
This approach was brought by Aloïs Brunel, Damiano Mazza, Michele Pagani in Backpropagation in

the Simply Typed Lambda-Calculus with Linear Negation[BMP20], 2020, and is the baseline of the
comparison of this internship.

The key to modular and efficient differentiable programming is making symbolic backprop (the reverse-mode
transformation) compositional. And it achieved that by considering a programming language with a notion of

5

linear negation, and provides a method not only on computational graphs, or first-order linear function, but
also possible higher order.

Its archetypal contravariant operation is negation:

Definition 3.1 (negation). For a (real) vector space A, negation corresponds to the dual space A ⊸ R,
which may be generalized to A⊥E := A ⊸ R for an arbitrary space E , although in fact we will always take
E = Rd for some d ∈ N. We can keep E implicit if the context is not very concerned.

For forward-mode transformation, a canonical way of transforming a differentiable function f : R → R
with derivative f ′ into a function Drf : R× R⊥ → R× R⊥ from which the derivative of f may be extracted.
Namely, let, for all x ∈ R and x∗ ∈ R⊥,

Drf(x, x∗) := (f(x), λa.x∗(f ′(x) · a))
where they use λ-notation with the standard meaning.

And Dr is compositional: for all x ∈ R and x∗ ∈ R ⊸ R, we have

Drg(Drf(x, x∗)) = Drg(f(x), λa.x∗(f ′(x) · a)) = (g(f(x)), λb.(λa.x∗(f ′(x) · a))(g′(f(x)) · b))
= (g(f(x)), λb.x∗(f ′(x) · (g′(f(x)) · b)) = (g(f(x)), λb.x∗((g′(f(x)) · f ′(x)) · b))
= ((g ◦ f)(x), λb.x∗((g ◦ f)′(x)ů · b)) = Dr(g ◦ f)(x, x∗)

This observation may be generalized to maps f : Rn → R: for all x ∈ Rn and x∗ = x∗1, ..., x∗n ∈ R⊥, hence the
reverse-mode transformation

←−D(f)(x; x∗) := (f(x), λaR.Σk
i=1x∗i (∂if(x) · a))

where the x∗i here are the backpropagators.
Obviously ←−D(f) : (R× R⊥)n → R× R⊥, and if we take E = Rn, we have

(π2
←−D(f)(x; ι1, ..., ιn))1 = ∇f(x)

, where, for all 1 ≤ i ≤ n, ιi : R→ Rn is the injection into the i-th component, i.e., ιi(x) = (0, ..., x, ..., 0) with
zeros everywhere except at position i. Moreover, ←−D is compositional. For the full construction see 5.1.

• To be proved3: The fact that ←−D is a cartesian closed 2-functor or, better, a morphism of cartesian
2-multicategories, obtained by freely lifting to λ-terms a morphism defined on computational graphs.

3.2 Categorical approach
A notable work by Elliott [Ell18] gives a categorical, purely functional, define-then-run version of reverse AD,

but however the sequential and parallel composition of differentiable functions rely (respectively) on sequential
and parallel composition of linear maps, and likewise for each other operation. And their techniques are limited
to first-order programs over tuples of real numbers.

[Vyt+19] then proposes two possible extensions of Elliott’s functional AD to accommodate higher-order
functions. However, it does not address whether or why these extensions would be correct or establish a more
general methodology for applying AD to languages with expressive features.

Matthijs Vákár and Tom Smeding introduces Combinatory Homomorphic Automatic Differentiation
(CHAD)[VS21] and its proof of correctness. CHAD is based on the observation that Elliott’s work in [Ell18]
has a unique structure preserving extension that lets them perform AD on various expressive programming
language features. Which is Grothendieck Constructions on Strictly Indexed Categories. For more
details of how they elegantly pair primals with (co)tangents, categorically, see section 6 in [VS21](not included
in this report).

Remark. This paper also describes Abstract Denotational Semantics (by the properties of Syn), Concrete
Denotational Semantics (in CMon) and finally Operational Semantics, which we won’t discuss here.

Their comments on symbolic method:
1. Such approaches firstly have the severe downside that they can suffer from interpretation overhead.
2. Secondly, the differentiated code cannot benefit as well from existing optimizing compiler architectures.

As such, these AD libraries need to be implemented using carefully, manually optimized code, that, for
example, does not contain any common sub-expressions. This implementation process is precarious and
labour intensive.

3I was trying to prove it but later with the reformulation it’s no longer necessary, intuitions for the proof see Apendix B

6

3. Furthermore, some whole-program optimizations that a compiler would detect go entirely unused in such
systems.

Their transformation −→D(t)2 and ←−D(t)2 on a program t is compositional, generate purely functional code
and the code size grow linearly in the size of t.

Its correctness and solving the problem of sharing sub-expressions in a purely categorical way make us
interested and is one of the main comparison we did, as to be found in Adagio : Comparing BMP20 with
CHAD.

3.3 Approaches more close to implementation
There exists many approaches in the implementation level, a good example I could think of is Auto-

matic Differentiation via Algebraic Effects and Handlers, by Jesse Sigal, who gave his talk during the
workshop[Sig20]. This implementation approach uses functional programming languages, although primarily
Haskell, he mentioned that OCaml has a good handling on algebra effects and has potentials.

However in this internship we don’t focus on them since it’s very difficult to check their properties only by
implementation. While some approaches using functional language structures to help achieving the properties
we desired.

So we studied Kra+22: Provably Correct, Asymptotically Efficient, Higher-Order Reverse-
Mode Automatic Differentiation[Kra+22] as the second half of the internship and also designed a refor-
mulation of linear factoring for [BMP20].

Its second version of reverse-mode transformation is similar to [BMP20] , and it uses a Wrapper structure
around the transformations with evaluation rules to deal with the data flow.

To achieve the efficient property (their way of saying no duplication calculation of sub-expressions), they
use Moggi’s call-by-value monadic translation on the wrapper, and add supporting functions for the monadic
translation to eliminate the duplication.

4 Intermezzo : Graphical language setup
I first tried to compare them in a pure numerical way, which is the execution of the example program

in Figure 1 by both of the reverse-mode transformations. But as you will see next, the constructions of
the transformations are very complicated to process in a such method, especially for CHAD, there are many
categorical structures that are difficult and confusing to be presented.

After being stuck for almost a month, Damiano gave me a graphical point of view and it’s surprisingly fit to
our task, as both methods are naturally adapted to formal graphical languages such as proof nets and string
diagram – By tracing the backpropagators and analysing the structures of the diagrams, comparing is far more
easier!

Using a formal visualized language such as string diagram and proof net to compare them is original although
there exist a paper [AP+21] using string diagram to do AD base on the method of [BAJM08].

But first we need to setup a formal graphical language, to make sure they are not some subjective drafts.

4.1 Setup in String diagrams
We will use the graphical syntax developed in [AP+21]. The full definition of string diagrams is omitted

here, for the comparison we only need part of them.
For more about the functorial boxes we’re going to use to represent lambda abstraction and other operations

see [Mel06].

We represent type of a node in a circle, for example a node with type ιk:
ιk

weakening as: ,

contraction as: 4 , Rn → R arithmetic operations for example "plus" as a triangle that takes multiple

4The dot can be omitted.

7

inputs and gives one output:

+
...

, the tensor product of !x⊗ y:

x y

, higher-order application as a lower

semi-circle:

X ⊸ Y X

Y
(this is also the x•y operation defined in [VS21]), and finally the lambda abstraction:

...

, the variable of the lambda is the dot on the top right, it takes other symbols of the lambda
term from the wire on the top.

Example. Let’s start with an example to show how it works with let y = x1 − x2 in (λw.wy)y:

−
x1x2

y
w

·

y splits to two, one goes inside and form the lambda, while another applies to the lambda.

4.2 Setup in Proof nets
The graphical language could be easily adapted to Proof nets instead of String diagrams, for more details

see [Gue01] and [Acc18].

4.3 Graphical standard AD
From the definition of AD of the last section, for a program t we can have:

x1 xn

...

t

x1 xn

...

...

n

standard backpropagator

bp(t)

Example. With execution on the example given in Figure 1:

8

f

g

h

x1 x2

·

∂h 1

∂1g ∂2g

· ·

· ·

∂1f ∂2f

+

5 Adagio : Comparing BMP20 with CHAD
As we have seen in section 3.1, although the method of lambda calculus with linear negation is compositional

and elegantly simple, it doesn’t naturally deal with duplication of sub-expressions. For this reason, efficiency
is achieved only by considering a specific evaluation strategy. By contrast, CHAD has the ability to pass the
duplicated sub-expression only once. We wanted to understand why it worked and how can we adapt similar
method to BMP20.

We only compare the reverse-mode transformations to track with how each methods deal with cotangents,
since the forward-mode is simply applying chain rule to each basic operations in a forward primal trace.

In this section, we’ll give the detailed constructions on both methods, transfer them into the graphical
language and explore their mechanisms with the right example.

5.1 Construction of BMP20 Reverse-mode transformation ←−Dd(t)
Definition 5.1. Terms and Types
Since the linear factoring rulea is type-sensitive (it is unsound in general), it is convenient to adopt a
Church-style presentation of our calculus, i.e., with explicit type annotations on variables. The set of types
is generated by the following grammar:

A, B, C ::= R|A×B|A→ B|R⊥d (simple types)
where R is the ground type of real numbers.

aThere will be a new linear factoring rule so we won’t go deeply for the original one in this report

In this linear substitution calculus,the grammar of values and terms is given by mutual induction as follows:
v ::= x(!)A|r|λx(!)A.t|⟨v1, v2⟩ (values)

t, u ::= v|ut|⟨t, u⟩|t[⟨x(!)A, x(!)A⟩ := u]|t[x(!)A := u]|t + u|f(t1, ..., tk) (terms)
The typing rules are not necessary for the comparing, however for those who are interested, see C.

Definition 5.2. Action of the transformation on types

←−Dd(R) := R×R⊥d

←−Dd(A→ B) := ←−Dd(A)→←−Dd(B)
←−Dd(A×B) := ←−Dd(A)×←−Dd(B)

9

Definition 5.3. Action of the transformation on terms

←−Dd(x!A) := x
←−
Dd(A)

←−Dd(λx!A.t) := λx
←−
Dd(A).

←−Dd(t)
←−Dd(tu) := ←−Dd(t)←−Dd(u)

←−Dd(⟨t, u⟩) := ⟨
←−Dd(t),←−Dd(u)⟩

←−Dd(t[⟨x!A, y!B⟩ := u]) := ←−Dd(t)[⟨x
←−
Dd(A), y

←−
Dd(B)⟩ :=←−Dd(u)]

←−Dd(t[x!A := u]) := ←−Dd(t)[x
←−
Dd(A) :=←−Dd(u)]

←−Dd(r) := ⟨r, λaR.0⟩
←−Dd(t + u) := ⟨x + y, λaR.(x∗a + y∗a)⟩

[⟨x!R, x∗!R
⊥d ⟩ :=←−Dd(t)]

[⟨y!R, y∗!R
⊥d ⟩ :=←−Dd(u)]

←−Dd(f(t)) := ⟨f(x), λaR.Σk
i=1x∗i (∂if(x) · a)⟩[⟨x!R, x∗!R

⊥d ⟩ :=←−Dd(t)]

As we will also see in the following section of CHAD, to construct a transformation, we need to define:
the single variable rule, lambda rule, application rule (tu), tuple rule, the let rule (t[x!A := u]), empty rule,
multiple operations rule (f(t)).

5.2 Construction of CHAD Reverse-mode transformation ←−DΓ(t)
They use Linear λ-Calculus, as an idealised target language, consider linear types (aka computation

types), in addition to the Cartesian types (aka value types) τ, σ, ρ. They think of Cartesian types as denoting
sets and linear types as denoting sets equipped with an algebraic structure.

Definition 5.4. Definition of ∗ and •
Jτ ∗ σK def= JτK× JσK

Jt • sK def= Λ−1(JtK); JsK(or JsK ◦ Λ−1JtK)

Typing rules: Figure 3 5

Evaluation rules: Figure4
The suitable terms (e.g, linear operations) to represent the forward and reverse mode derivatives of the

primitive operations op ∈ Opm
n1,...,nk

are:

x1 : realn1 , ..., xk : realnk ; v : realn1 ∗ ... ∗ realnk

⊢ Dop(x1, ..., xk; v) : realm

x1 : realn1 , ..., xk : realnk ; v : realm

⊢ Dopt(x1, ..., xk; v) : realn1 ∗ ... ∗ realnk

Definition 5.5. Basic definitions

←−D(realn)1 := realn
←−D(realn)2 := realn

←−DΓ(op(t1, ..., tk)) := let ⟨x1, x′1⟩ =←−DΓ(t1) in ... let ⟨xk, x′k⟩ =←−DΓ(tk) in
⟨op(x1, ..., xk),
λv. let v∗ = Dopt(x1, ..., xk; v) in x′1 • (proj1v∗) + ... + in x′k • (projkv∗)⟩

Implied reverse mode CHAD

5We found a typo and marked in red, the v here should be replaced by z.

10

Figure 3: Typing rules.

Figure 4: Evaluation rules.

Definition 5.6. Types of (reverse mode) primals ←−D(τ)1 and cotangents ←−D(τ)2 associated with a type τ as :

←−D(1)1 := 1 ←−D(1)2 := 1
←−D(τ ∗ σ)1 := ←−D(τ)1 ∗

←−D(σ)1
←−D(τ ∗ σ)2 := ←−D(τ)2 ∗

←−D(σ)2
←−D(τ → σ)1 := ←−D(τ)1 → (←−D(σ)1 ∗ (←−D(σ)2 ⊸

←−D(τ)2)) ←−D(τ → σ)2 := !←−D(τ)1 ⊗
←−D(σ)2

Associate a non-trivial type of primals to function types as exponentials are not fibred in ΣCsynLSynop, see
[VS21].

For programs t,6

Definition 5.7. The reverse mode CHAD transformation ←−DΓ(t) as follows:

6Different v in the same rule of CHAD definitions are not distinct from each other in the original paper, thus here we use v
and v∗ to separate them.

11

←−DΓ(x) := ⟨x, λv.coprojidx(x;Γ) (v)⟩
←−DΓ(let x = t in s) := let ⟨x, x′⟩ =←−DΓ(t) in let ⟨y, y′⟩ =←−DΓ,x(s) in

⟨y, λv. let v∗ = y′ • v in fst v∗ + x′ • (snd v∗)⟩
←−DΓ(⟨⟩) := ⟨⟨⟩, λv.0⟩

←−DΓ(⟨t, s⟩) := let ⟨x, x′⟩ =←−DΓ(t) in let ⟨y, y′⟩ =←−DΓ(s) in
⟨⟨x, y⟩, λv.x′ • (fst v)⟩+ y′ • (snd v)

←−DΓ(fst t) := let ⟨x, x′⟩ =←−DΓ(t) in ⟨fst x, λv.x′ • ⟨v, 0⟩⟩
←−DΓ(snd t) := let ⟨x, x′⟩ =←−DΓ(t) in ⟨snd x, λv.x′ • ⟨0, v⟩⟩
←−DΓ(λx.t) := let y = λx.

←−DΓ,x(t) in

⟨λx. let ⟨z, z′⟩ = yx in
⟨z, λv. snd (z′ • v)⟩, λv∗. case v∗ of !x⊗ v → fst ((snd (yx)) • v)⟩

←−DΓ(t s) := let ⟨x, x′ctx⟩ =←−DΓ(t) in let ⟨y, y′⟩ =←−DΓ(s) in let ⟨z, x′arg⟩ = xy in
⟨z, λv.x′ctx • (!y ⊗ v) + y′ • (x′arg • v)⟩

The transformations for variables, tuples and projections implement the well-known multivariate calculus
facts about (transposed) derivatives of differentiable functions into and out of products of spaces. The transfor-
mations for let-bindings add to the chain rules. The transformations for λ-abstractions split the derivative of
a closure λx.t into the derivative z′ with respect to x and the derivative snd(yx) with respect to the captured
context variables; they store z′ together with the primal computation z of λx.t in the primal associated with the
closure and they store snd(yx) in the cotangent associated with the closure. Conversely, the transformations
for evaluations extracts those two components of the (transposed) derivative x′ctx (w.r.t. context variables) and
x′arg (w.r.t. function argument) from the cotangent and primal, respectively, and recombine them to correctly
propagate cotangent contributions from both sources.

5.3 Comparing Graphical representations of BMP20 and CHAD
Of all the rules, the ones interesting are the construction of the multiple ti rule, let rule, lambda rule and

the application rule.
We will first compare them one by one then we can use a simple example to show their mechanisms.

Remark. We use dash lines for the cotangents, and dash lambda is the linear lambda λ in CHAD.

5.3.1 op(t1, ..., tk)

For op(t1, ..., tk):

t1 tk

...

f

Left is BMP20 and right is CHAD:

12

f

... ∂1f ∂kf

+ +

...

... ...

...

... ...

ι1 ιk

· · f

... ∂1f ∂kf

+ +

...

... ...

...

... ...

ι1 ιk· ·

The ιi here has the type of R ⊸ Rd, both methods use same type for backpropagators, but BMP20 extracts
the ι types directly from variables while CHAD keep this process inside the lambda.

We can also compare those diagrams in a meta level, to have a better look at their inputs and outputs, for
example:

←−
D bmp20(f)

←−
DCHAD(f)

R R R

R RR ⊸ Rd

R ⊸ Rd
R ⊸ Rd R

R ⊸ Rd

5.3.2 let x = t in s

The let rule and application rule for BMP20 are very simple due to its functional structure, right is CHAD
which is carefully designed to avoid sharing of common sub-expressions (we’ll compare with an example later):

t

s

←−
D(t)

←−
D(s)

←−
Dτ (t)

←−
Dτ ,x(s)

+

13

5.3.3 λx.t

For lambda rule:

t

,left is BMP20 and right is CHAD:

←−
D(t)

←−−
Dτ ,x(t)

y x

v

⊗
x

v∗

...

5.3.4 t s

For application rule:

t s

BMP20:

←−
D(t) ←−

D(s)

CHAD: In reality, we trace only the cotangents, the primal operations has very few impact, so we can ignore
the inputs (which are dot lines) from primal to the lambda :

14

+

←−
Dτ (t) ←−

Dτ (s)
x x′ctx y′y

z

x′arg

v

5.4 Comparison with an example
Now we have the full setup of both methods, it’s time to study with an example similar to the problem that

was raised in [BMP20] for duplication of sub-expressions :
let y = x1 − x2 in z = y · y in z

The duplication of sub-expressions happens in the cotangent phase, hence we only need to check the dash
strings.

Remark. For this property we only need to consider let rule and basic function rule for first order, Lambda
and application rules are not considered.

Example. The left is BMP20 and right is CHAD:

15

·

+ +

·

+ +

·

−1

ι1 ι2
x1 x2

−

·

R R ⊸ R2

duplication

·

+ +

·

+ +

·

−1ι1
ι2

x1 x2

−

·

R R ⊸ R2

ι1
ι2

+

+ +
let rule

This visualizes how they deal with the duplication of variable: BMP20 extracts the data type along with
the variable, so duplication is unavoidable; while CHAD uses a special let construction accepting feeds from
lambdas and process to a single result, there’s no direct variable passing through the lambdas (which are
different layers of functions), since all outputs of the lambdas and let are single with duplicated variables, it
does not calculate twice !

6 Adagio : Comparing reformulated BMP20 with
Kra+22

There are three versions of reverse-mode transformations in [Kra+22]: first one is a rough idea of backprop-
agation, second one is similar to [BMP20], also has sub-expression sharing problem, we won’t go deep at the
comparison in this level for two reasons:

1. They adopt several conveniences inspired by Haskell:
• do-notion allows sequencing of monadic operations by using statements.
• In the statement x⇐ e, when e : M A,then x : A.
• The expression pure e has type M A when e : A.
• The type of the do-expression is the same as the type of the expression in the last statement.

we did try to use the graphical language to visualize them, but we found that to do it, we need to first
model those functions in Haskell, and thus the diagram will be extremely complicated, in the other hand,
due to its implementation oriented design, we could simply just look at the outcomes and its functions.

2. It’s the solving of this problem, which is the monadic translation from second version to final version
that interests us.

16

Figure 5: Supporting functions (rendered in Haskell-like syntax) for the monadic translation

6.1 Monadic approach with Kra+22
For us what’s most interesting is their Monadic translation from the second version to the final version.

Which solved the sub-expression problem.
Instead of using R ⊸ R like we’ve seen so far, it has a custom type Delta (as D in short) as the π2 data

in the dual number.
First let’s look at the meta level using the graphical language, given a program t, we have:

...

t

R R

←−
D(t)

R

R RD D...

S → R×D × S

17

where
S := Nat× List(Nat×D)

The list structure is to assign id (Nat) to each of the sub-expressions it passes.
For Monadic translation rules and Reverse-mode wrapper around the translation, see Appendix D. What

we’re interested is the supporting functions, for the monadic translation in Figure 5:
The last evaluation rule (the let) is how they deal with the duplication, when each sub-expression is

processed, it checks the uid of this term in um2, if it hasn’t been processed before, add it to um2, otherwise
delete it. 7

6.2 Reformulation of linear factoring for BMP20
In the beginning of this internship, when I first studied the sub-expression problem, I had the intuition

that we can simply create a storage structure to check the sub-expressions for duplication. Kra+22 is using a
similar structure in an implementation oriented approach to achieve it.

But can we do it in a more functional way?
Now we design a reformulation of linear factoring for BMP20 inspired by the Wrapper structure of Kra+22,

adding evaluation rules and a modified backpropagator with a linear lambda l to store all the different en-
countered sub-expressions to C (described in the last 2 evaluation rules). In implementation level, we can
construct the backpropagator as a hash-table. More specifically, when a sub-expression is processed, check if
the backpropagator x∗l is already in C, if not, process and add it to C ; if it already exists, we don’t pass it,
because it should’ve already been passed.
6.2.1 New backpropagator

Definition 6.1. Introducing a new backpropagator x∗l of type R ⊸ D ; d, e of type D, which is the output
type generated by the SOURCE type.

D ∼= Rn

By applying t of type R to the backpropagator, we can get x∗l t of type D. We can use R⊥D for short of
R ⊸ D. See negation.
6.2.2 Typing

Definition 6.2. linear lambda l,
la.d

lambda which only process when a is linear.

This linear lambda makes sure the node passed is linear. Instead of values and terms style like in [BMP20],
we have two calculi: SOURCE calculi with terms t, u and TARGET calculi dealing with terms d, e of type D.

t, u := x | ⟨t, u⟩ | π1t | π2t | let x := u in t | f(t1, ..., tn) | la.d (SOURCE)
d, e := 0 | d⊕ e | x∗l t (TARGET)

A, B := R | R⊥D | D | A×B (types)

Remark. f(t1, ..., tn): in short of 3 cases r, t + u, t · u.

6.2.3 Typing rules

Γ ⊢ 0 : D

Γ; x : R ⊢ x : R

Γ; a : R ⊢ a : R

Γ; ∆ ⊢ t : R Γ; ∆ ⊢ u : R
Γ; ∆ ⊢ t + u : R

7In my opinion it’s not necessary to to the delete since it’s enough that the uid doesn’t store in um2.

18

Γ; ∆1 ⊢ t : R Γ; ∆2 ⊢ u : R
Γ; ∆1; ∆2 ⊢ t · u : R

Γ; ∆ ⊢ t : R
Γ; ∆; x∗l : R⊥ ⊢ x∗l t : D

Γ; ∆; a : R ⊢ d : D
Γ; ∆ ⊢ la.d : R⊥D

Γ; ∆ ⊢ d : D Γ; ∆ ⊢ e : D
Γ; ∆ ⊢ d⊕ e : D

Γ; ∆1 ⊢ u : A Γ; ∆2; x : A ⊢ t : C
Γ; ∆1; ∆2 ⊢ let x := u in t : C

Remark. context C: it’s a one-hole context same as the ones in the paper [BMP20], defined by the typing
rules restricted to the terms having exactly one occurrence of a specific variable {·}, called the hole. Given
a context C and a term t we denote by C{t} the substitution of the hole in C by t allowing the possible
capture of free variables of t.

6.2.4 Evaluation rules
8

π1⟨t, u⟩ → t

π2⟨t, u⟩ → u

f(r1, r2, ..., rn) → S, if S = f(r1, r2, ..., rn)
let x := r in t → t[r/x]

x∗l t⊕ x∗l u → x∗l (t + u)
let x∗l := la.d in C{x∗l u} → C{d[u/a]} provided that x∗l /∈ C

Remark. The construction of new backpropagation transformation ←−Dl with x∗l is necessarily the same as
the original one in 5.1.

6.2.5 Verifying new transformation by graphical language
We can then verify the properties of the new transformation on the example of 5.4:

8r in here means real number.

19

·

+ +

·

+ +

·

−1

ι1 ι2
x1 x2

−

·

R R ⊸ R2

eva let rule

⊕

When we have processed the first lambda, instead of duplicate and process to the next lambda, we apply
with the last evaluation rule, which checks the backpropagator with context C, and process only once (since
the duplicated one is already in C after the first encounter), then apply with the ⊕ evaluation rule in the next
lambda with the backpropagator.

This is what happened in the second lambda by the ⊕ evaluation rule doing linear factoring:

R R

R R

R ⊸ D

R ⊸ D

+

+

Remark. However, its formal validity proof is not yet studied, and should be done in the future.

7 Presto : Conclusion
Summary and future work are already mentioned in the first page as required.
I had a pretty rough start in the beginning of the internship, I just finished heavy exams and a very intense

course semester, plus the topic itself requires a broad background and deep understandings in related disciplines
which I did not possess. But when Damiano gives the idea of graphical language (I personally prefer visualized
proofs as well), we progressed fast and thus lead to the results presented in this report. I learnt quite a lot
from this internship and would love to continue with the studies in this topic.

20

References
[Aba+16] Martín Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In: Proceedings

of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16)
(2016). url: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.
pdf.

[Acc18] Beniamino Accatooli. “Proof Nets and the Linear Substitution Calculus”. In: 15th International
Colloquium on Theoretical Aspects of Computing (ICTAC 2018) (2018). url: https : / / hal .
archives-ouvertes.fr/hal-01967532/document.

[AP20] Martin Abadi, Gordon Plotkin. “A Simple Differentiable Programming Language”. In: POPL,
ACM (2020).

[AP+21] Mario Alvarez-Picallo et al. “Functorial String Diagrams for Reverse-Mode Automatic Differenti-
ation”. In: (2021). url: https://arxiv.org/abs/2107.13433.

[BAJM08] Pearlmutter B. A., Siskind J. M. “Reverse-mode AD in a functional framework: Lambda the
ultimate backpropagator”. In: ACM Trans. Prog. Lang. Syst. 30, 2, Article 7 (2008), p. 36. issn:
0019-9958. doi: https://doi.org/10.1145/1330017.1330018.

[BMP20] Aloïs Brunel, Damiano Mazza, Michele Pagani. “Backpropagation in the Simply Typed Lambda
Calculus with Linear Negatio”. In: Proc. ACM Program. Lang. 4, POPL, Article 64 (2020). url:
https://arxiv.org/abs/1909.13768.

[Ell18] Conal Elliott. “The Simple Essence of Automatic Differentiation”. In: Proceedings of the ACM on
Programming Languages 2, ICFP (2018).

[Gue01] Stefano Guerrini. “Proof nets and the λ-calculus”. In: (2001).
[Kra+22] Faustyna Krawiec et al. “Provably Correct, Asymptotically Efficient, Higher-Order Reverse-Mode

Automatic Differentiation”. In: Proc. ACM Program. Lang. 6, POPL, Article 48 (2022).
[Mel06] Paul-André Melliès. “Functorial Boxes in String Diagrams”. In: Computer Science Logic, 20th

International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary,
September 25-29, 2006, Proceedings (Lecture Notes in Computer Science) (2006). url: https:
//doi.org/10.1007/11874683_1.

[MO20] Carol Mak, Luke Ong. “A Differential-form Pullback Programming Language for Higher-order
Reverse-mode Automatic Differentiation”. In: (2020). url: https://arxiv.org/abs/2002.08241.

[Pas+17] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: 31st Conference on Neural In-
formation Processing Systems (NIPS 2017) (2017). url: https://openreview.net/pdf?id=
BJJsrmfCZ.

[Sig20] Jesse Sigal. “Automatic Differentiation via Algebraic Effects and Handlers”. In: (2020). url:
https://lipn.univ-paris13.fr/~mazza/DiffProgWorkshop/Sigal.pdf.

[VS21] Matthijs Vákár, Tom Smeding. “CHAD: Combinatory Homomorphic Automatic Differentiation”.
In: ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (2021). url: https://arxiv.org/abs/
2103.15776.

[Vyt+19] Dimitrios Vytiniotis et al. “The Differentiable Curry”. In: NeurIPS 2019 Workshop Program Trans-
formations (2019).

A Conventions
A.1 Higher-order
A.1.1 Higher-order quantification (polymorphism)

(for second-order quantification, which is the one people are usually interested in when dealing with pro-
gramming languages) The logical meaning. It means that quantifiers may range over properties, rather than
just individuals. It is the "higher order" of System F.

i

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://hal.archives-ouvertes.fr/hal-01967532/document
https://hal.archives-ouvertes.fr/hal-01967532/document
https://arxiv.org/abs/2107.13433
https://doi.org/https://doi.org/10.1145/1330017.1330018
https://arxiv.org/abs/1909.13768
https://doi.org/10.1007/11874683_1
https://doi.org/10.1007/11874683_1
https://arxiv.org/abs/2002.08241
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
https://lipn.univ-paris13.fr/~mazza/DiffProgWorkshop/Sigal.pdf
https://arxiv.org/abs/2103.15776
https://arxiv.org/abs/2103.15776

A.1.2 Higher-order types
The programming languages meaning. It means that programs can take as argument other programs. In

term of types, it means that, in the arrow type A → B, the type A may itself be an arrow type. In fact, the
order of a type is usually defined as follows: base types have order 0; and the order of A→ B is one plus the
maximum between the orders of A and B. So according to Damiano, "going from first order to higher order is
for free".
A.1.3 Higher-order derivatives

The mathematical meaning. It means that one is considering the second derivative, third derivative, and
so on, of a function. We do not consider this for the moment.

B Intuition for the proof of the fact mentioned
in BMP20

We here give a very naive intuition for the proof:
Prime is the primal variables x, Λ(Prime) is the backpropagator x∗, and they satisfy:
To be corrected

Prime

Λ(Prime) ∂Λ(Prime)

µ

∂

∂̂

We want to show that ∂̂ is a cartesian closed 2-functor. However I don’t have enough time to dive in this
perspective and it’s quite away from my main topics.

C The Typing rules of original BMP20 approach

Figure 6: The typing rules. In the pairing and sum rules, either all three sequents have z, or none does.

ii

D The Monadic translation and Reverse-mode
wrapper of Kra+22

Figure 7: Monadic translation

iii

Figure 8: Reverse-mode wrapper around ←−D

iv

	Overture : Introduction
	Basic notions of differentiation
	Derivative
	Rules for Differentiation

	Category theory Preliminaries

	Prelude : Automatic Differentiation
	Forward-mode : Dual Number method
	Reverse-mode : Backpropagation algorithm
	Symbolic Backpropagation

	Allegro : Existing Approaches
	Simply Typed Lambda-Calculus with Linear Negation
	Categorical approach
	Approaches more close to implementation

	Intermezzo : Graphical language setup
	Setup in String diagrams
	Setup in Proof nets
	Graphical standard AD

	Adagio : Comparing BMP20 with CHAD
	Construction of BMP20 Reverse-mode transformation d(t)
	Construction of CHAD Reverse-mode transformation (t)
	Comparing Graphical representations of BMP20 and CHAD
	op(t1,...,tk)
	let x=t in s
	x.t
	ts

	Comparison with an example

	Adagio : Comparing reformulated BMP20 with Kra+22
	Monadic approach with Kra+22
	Reformulation of linear factoring for BMP20
	New backpropagator
	Typing
	Typing rules
	Evaluation rules
	Verifying new transformation by graphical language

	Presto : Conclusion
	Conventions
	Higher-order
	Higher-order quantification (polymorphism)
	Higher-order types
	Higher-order derivatives

	Intuition for the proof of the fact mentioned in BMP20
	The Typing rules of original BMP20 approach
	The Monadic translation and Reverse-mode wrapper of Kra+22

